воскресенье, 5 марта 2023 г.

  06.03.2023

Группа 512

Предмет: Техника и технология ручной дуговой сварки( плавки, резки) неплавящимся электродом в защитном газе 

Тема: Окопные группы и марки материалов свариваемых частично механизированной сваркой (наплавкой) плавлением.

Тема урока: Характеристика среднелегированных и высоколегированных сталей. Особенности технологии сварки (наплавки)

Цель урока: изучить данную тему, составить конспект урока. 

Сварка среднелегированных и высоколегированных сталей

Сварка среднелегированных и высоколегированных сталей

Сваривание этих видов сталей затруднено по ряду причин. В процессе сварки происходит частичное выгорание легирующих примесей и углерода. Вследствие малой теплопроводности возможен перегрев свариваемого металла. Эти стали отличает повышенная склонность к образованию закалочных структур, а больший, чем у низкоуглеродистых сталей, коэффициент линейного расширения может вызвать значительные деформации и напряжения, связанные с тепловым влиянием дуги. При этом, чем больше в стали углерода и легирующих примесей, тем сильнее проявляются эти свойства.

Для устранения влияния перечисленных причин на качество сварного соединения рекомендуется:

1. Тщательно подготавливать изделие под сварку.

2. Вести сварку при больших скоростях с малой погонной энергией, чтобы не допускать перегрева металла.

3. Применять термическую обработку для предупреждения образования закалочных структур и снижения внутренних напряжений.

4. Применять легирование металла шва через электродную проволоку и покрытие с целью восполнения выгорающих в процессе сварки примесей.

Изготовление электродов для сварки высоколегированных сталей осуществляется из высоколегированной сварочной проволоки. Для них применяют покрытие типа Б. Обозначения типов электродов состоят из индекса Э и следующих за ним цифр и букв. Две или три цифры, следующие за индексом, указывают на количество углерода в металле шва в сотых долях процента. Следующие затем буквы и цифры указывают примерный химический состав металла. Сварку производят постоянным током обратной полярности, сварочный ток выбирают из расчета 25–40 А на 1 мм диаметра электрода. Длина дуги должна быть возможно короткой. Рекомендуется многослойная сварка малого сечения при малой погонной энергии.

Хромистые стали относятся к группе нержавеющих коррозионно-стойких и кислотостойких сталей. По содержанию хрома они делятся на среднелегированные (до 14 % хрома) и высоколегированные (14–30 % хрома). Во время сварки хромистых сталей возникают следующие затруднения. Хром при температуре 600–900 °C легко вступает во взаимодействие с углеродом, образуя карбиды, которые, располагаясь в толще металла, вызывают межкристаллитную коррозию, снижающую механические свойства стали.

Чем выше содержание углерода в стали, тем активнее образуются карбидные соединения. Кроме того, хромистые стали обладают способностью к самозакаливанию (при охлаждении на воздухе), вследствие чего при сварке металл шва и околошовной зоны получает повышенную твердость и хрупкость. Возникающие при этом внутренние напряжения повышают опасность возникновения трещин в металле шва. Усиленное окисление хрома и образование густых и тугоплавких оксидов также являются серьезными препятствиями при сварке хромистых сталей.

Среднелегированные хромистые стали, содержащие углерода до 2 %, относятся к мартенситному классу. Они свариваются удовлетворительно, но требуют подогрева до 200–300 °C и последующей термической обработки. Высоколегированные хромистые стали ферритного класса сваривают с предварительным подогревом до 300–400 °C.

После сварки для снятия внутренних напряжений и восстановления первоначальных физико-механических свойств изделие подвергают высокому отпуску – нагреву до 650–750 °C и медленному охлаждению.

Электроды изготовляют из сварочной проволоки марок СВ01Х19Н9, СВ–04Х19Н9 и Св–07Х25Н13 с покрытием, содержащим плавиковый шпат и оксид марганца. Это обеспечивает получение жидкого шлака, хорошо растворяющего окислы хрома. Рекомендуются покрытия типов ПЛ–2, ЦТ–2 и УОНИИ–13/НЖ.

Хромистые стали, как и большинство легированных сталей, обладают малой теплопроводностью и легко подвергаются перегреву. Поэтому сварку их производят постоянным током обратной полярности при малых сварочных токах из расчета 25–30 А на 1 мм диаметра электрода.

Высоколегированные хромоникелевые аустенитные стали обладают рядом важных физико-химических и механических свойств: коррозионной стойкостью, кислотоупорностью, теплостойкостью, вязкостью, стойкостью против образования окалин. Важным качеством этих сталей является хорошая свариваемость.

Хромоникелевые стали марок 08Х18Н10 и 12Х18Н9 при нагреве до температуры 600–800 °C теряют антикоррозионную стойкость. Выделение карбидов хрома по границам зерен приводит к межкристаллитной коррозии стали. Поэтому сварку выполняют постоянным током обратной полярности при малых сварочных токах, сокращая продолжительность нагрева металла. Принимают также меры по отводу тепла при помощи медных подкладок или охлаждения. После сварки рекомендуется подвергнуть изделие нагреву до температуры 850–1100 °C и закалке в воде или на воздухе (для малых толщин металла).

Хромоникелевые стали марок 12Х18Н9Т и 08Х18Н12Б содержат титан и ниобий, которые, являясь более сильными карбидообразователями, связывают углерод стали, предупреждая образование карбидов хрома. Поэтому эти стали после сварки не подвергают термообработке.

Для сварки хромоникелевых сталей применяют электроды типов ОЗЛ–7, ОЗЛ–8, ЦТ–1 и ЦТ–7. Рекомендуются электроды из сварочной проволоки типа Св–01Х19Н9, Св–06Х19Н9Т или Св–04Х19Н9С2 с покрытием ЦЛ–2, ЦЛ–4 (содержат 35,5 % мрамора, 41 % плавикового шпата, 8,5 % ферромарганца и 15 % молибдена), УОНИИ–13/НЖ и др.

Тонколистовую сталь марки 12Х18Н19Т следует сваривать аргонодуговой сваркой, так как при сварке качественными электродами или под флюсом происходит науглероживание металла шва. Это снижает стойкость стали против межкристаллитной коррозии. Хромоникелевые аустенитные стали сваривают газовой сваркой при толщине металла не более 3 мм нормальным пламенем удельной мощности 75 л/(ч?мм). Присадочным материалом служат проволоки марок СВ01Х19Н9, СВ–04Х19Н9С2, Св–06Х19Н9Т и Св–07Х19Н10Б. Сварку следует вести быстро. Флюсом служат смесь буры (50 %) и борной кислоты (50 %) или плавиковый шпат (80 %) и двуоксид кремния (20 %).

Высоколегированная марганцовистая сталь, обладающая большой твердостью и износостойкостью, содержит 13–18 % марганца и 1–1,3 % углерода. Она применяется для изготовления зубьев экскаваторов, шеек камнедробилок и других рабочих органов дорожных и строительных машин, работающих при ударных нагрузках и на истирание. Для сварки применяют электроды со стержнями из углеродистой проволоки марок Св–08А, Св–08ГА, Св–10Г2 с покрытием, которое применяется для наплавочных электродов марки ОМГ, содержащим 23 % мрамора, 15 % плавикового шпата, 60 % феррохрома, 2 % графита, все компоненты замешаны на жидком стекле (30 % к общей массе сухих компонентов).

Рекомендуются покрытия, применяемые для наплавочных электродов типа ОЗН (45–49 % мрамора, 15–18 % плавикового шпата, 26–33 % ферромарганца, 3 % алюминия, 4 % поташа), все компоненты замешаны на жидком стекле.

Применяют также стержни электродов из проволоки марок СВ04Х19Н9 и Св–07Х25Н13 с покрытием ЦЛ–2, состоящим из 44 % мрамора, 51 % плавикового шпата, 5 % ферромарганца, замешанных на жидком стекле (20–22 % к массе сухих компонентов). Хорошие результаты дает также покрытие УОНИИ–13/НЖ. Сварка выполняется постоянным током обратной полярности короткими участками. Сварочный ток определяется из расчета 30–35 А на 1 мм диаметра электрода. Для получения шва повышенной прочности и износостойкости следует проковать сварной шов в горячем состоянии. При этом металл шва нужно интенсивно охлаждать холодной водой.

Молибденовые, хромомолибденовые и хромомолибденованадиевые стали относятся к теплоустойчивым сталям перлитного класса. Эти стали применяют при изготовлении сварных паровых котлов, турбин, различной аппаратуры в химической и нефтяной промышленности, для работы при высоких температурах и давлениях. Эти стали свариваются удовлетворительно при выполнении установленных технологических приемов: предварительного подогрева до 200–300 °C и последующего отжига при температуре 680–780 °C или отпуска при температуре 650 °C. Температура окружающего воздуха должна быть не ниже 4–5 °C. Сварка выполняется постоянным током обратной полярности. Рекомендуются электроды типов ОЗС–11, ТМЛ–1,ТМЛ–2, ТМЛ–3, ЦЛ–38, ЦЛ–39 и др. Для автоматической и полуавтоматической сварки применяют сварочную проволоку марок Св–08ХМ, Св–10Х5М и Св–18ХМА. При сварке в углекислом газе применяют предварительный и сопутствующий нагрев до температуры 250–300 °C, присадочную проволоку типа Св–10ХГ2СМА. После сварки рекомендуется термообработка.

Газовая сварка выполняется нормальным пламенем при удельной мощности 100 л/(чмм). Присадочный материал – сварочная проволока типов Св–08ХНМ, Св–18ХМА и Св–08ХМ. Рекомендуется предварительный подогрев до 250–300 °C, а после, сварки – термообработка (нормализация от температуры 900–950 °C).

Высоколегированные стали с особыми свойствами успешно сваривают в защитных газах. Режимы сварки подобны тем, которые используются при ручной сварке и под флюсом (ток обратной полярности, малые токи, термообработка). Электродную проволоку и флюсы применяют с учетом повышенного выгорания марганца, титана, ниобия, молибдена, никеля, т. е. элементов, обеспечивающих сохранение свойств свариваемых сталей.

Следует тщательно выбирать оптимальный режим сварки, с учетом минимальною нагрева зоны термического влияния и минимального объема сварочной ванны. При многослойной сварке каждый последующий шов нужно выполнять после остывания предыдущего. Охлаждение можно ускорить обдувом воздухом. Необходимо тщательно осушать защитный газ и очищать свариваемые кромки и проволоку от загрязнений.

В качестве защитного газа предпочтителен аргон

Один из недостатков сварки коррозионностойких сталей в углекислом газе и его смесях - образование на поверхности трудноудаляемой оксидной пленки. Необходимо выбирать режимы, при которых обеспечивается не только минимальный нагрев основного металла, но и наименьшее разбрызгивание электродного металла.

Подготовка к сварке

Кромки стыкуемых деталей из высоколегированных сталей лучше готовить механическим способом. Однако допускается плазменная, электродуговая, газофлюсовая или воздушно-дуговая резка. После огневых способов обязательно обрабатывают кромки механическим инструментом на глубину 3-5 мм.

Снимать фаску для получения скоса кромки необходимо только механическим способом. Снаружи и внутри кромки зачищают от окалины и загрязнений на ширину 20 мм и обезжиривают.

Затем осушают защитный газ, очищают электродную проволоку от смазки и грязи травлением или механически с последующим прокаливанием.

Стыки собирают в приспособлениях либо с помощью прихваток. Их нужно располагать равномерно по всей длине стыков на расстоянии 75-125 мм одна от другой. Размеры прихваток выбирают в зависимости от толщины металла и геометрии стыка. Прихватки перед сваркой зачищают до металлического блеска и проверяют, нет ли в них трещин и других дефектов. Прихватки с недопустимыми дефектами удаляют механическим способом.

В местах пересечения швов прихватки устанавливать нельзя.

Выбор параметров режима

Сварку ведут постоянным током обратной полярности, желательно в среде инертных газов. Целесообразно выбирать сварочные проволоки сходные по химическому составу с основным металлом.

Режим сварки нужно соблюдать таким, чтобы шов остывал как можно быстрее.

Сварка высоколегированных коррозионностойких сталей возможна в СО2, газовых смесях: Ar+СО2; Ar+О2. Для получения качественных швов применяют проволоки с повышенным содержанием титана и алюминия, например: Св-07Х18Н9ТЮ, Св-08Х20Н9С2БТЮ

Ориентировочные режимы сварки сталей типа 18-8 в инертных газах

Вид соединения

Размер, мм

Газ

Сварочный ток, А

Напряжение на дуге, В

Диаметр электрода, мм

Вылет электрода, мм

Расход газа, л/мин

S

b

k

Сварное соединение

1,5-2

0+0,5

2-3

Ar

60-90
70-130

19-20
18-21

0,8
1-1,2

8-12
8-12

10-12
10-12

3-4

0+0,5

3-4

Ar

90-170
130-190

19-22
20-23

0,8-1
1,2-1,6

12-16
12-16

12-18
12-18

Сварное соединение

5-8

0+0,5

4-6

Ar
Ar
Не

160-300
230-300
160-300

20-25
22-26
24-30

1,2-1,6 1,6-2
1-1,6

16-20
16-20
10-16

18-20
18-20
40-60

Сварное соединение

12-25

0+1

-

Ar
Ar
Не

280-400 350-550
280 450

22-26
25-28
30-40

1,6-2
3-4
1,6-2

16-30
25-40
16-30

30-40
40-45
60-80

Ориентировочные режимы сварки высоколегированных сталей в углекислом газе

Соединение

Размер, мм

Сварочный ток, А

Напряжение на дуге, В

Диаметр электрода, мм

Вылет электрода, мм

Расход газа, л/мин

S

b

Сварное соединение

1
1,5
2
3

0
0
0,5
0,5

25-60
35-80
45-100
70-120

16-17
16-17
16-18
18-20

0,5
0,5-0,6
0,6-0,8
0,8-1,2

6-8
6-8
6-10
8-10

5
5-6
6-8
7-9

Сварное соединение

4,5
6
8

0,5
1
1

110-180
150-260
170-280

20-24
26-30
26-30

1,2-1,6
1,6-2
1,6-2

10-12
12-14
12-14

8-14
14-18
14-18

Сварное соединение

10

1,5

240-400

27-34

2

12-18

16-24

Техника сварки

При сварке высоколегированных сталей необходимо придерживаться следующих правил: сварку вести короткой дугой "ниточными" швами и по возможности "углом вперед", с минимальным разбрызгиванием электродного металла. Рабочий режим сварки уточняют на образцах.

В процессе сварки следует контролировать глубину проплавления и полноту провара корректируя режим сварки с помощью дистанционного пульта управления - изменяя сварочный ток и напряжение на дуге.

Начало и конец сварочного шва целесообразно сварить на выводных планках, не допуская ожогов металлоконструкции.

При перерывах в работе конец электродной проволоки удаляют кусачками или пассатижами.

Перед началом сварки дают продувку газом в течение 3-5 с; после окончания сварки горелку не убирают, а дают возможность закристаллизоваться сварочной ванне и остыть околошовной зоне в защитном газе, задерживая горелку в конце шва на 5-7 с после погашения дуги. Для обеспечения высоких антикоррозионных свойств сварного соединения необходимо тщательно заварить кратер.

Комментариев нет:

Отправить комментарий

                                                                          Группа 406 Дифференцированного зачета по общеобразовательной дис...