понедельник, 27 февраля 2023 г.

   27.02.2023

Группа 512

Предмет: Техника и технология ручной дуговой сварки( плавки, резки) неплавящимся электродом в защитном газе 

Тема: Технология ручной дуговой и плазменной сварки и резки металла

Тема урока: Назначение и условия работы контрольно-измерительных приборов, привила из эксплуатации и область их применения.

Цель урока: изучить данную тему, составить конспект урока

Устройство, назначение, применение контрольно-измерительных приборов

В процессе токарной обработки заготовок (деталей) для контроля и измерения параметров обрабатываемых поверхностей используются различные измерительные инструменты и приборы, а также такие устройства, как шаблоны, меры и калибры.

Шаблоны применяют для контроля радиусов изготавливаемых деталей, проверки профиля фасонной детали и профиля нарезанной резьбы и выполняют в виде металлических пластин соответствующих параметров, которые указываются в виде цифровых обозначений на их поверхности (радиусы закруглений поверхности, размеры профиля, размеры резьбы, а также ее вид — винтовая, метрическая, дюймовая, трапецеидальная).

Меры — устройства, воспроизводящие единицу измерения либо ее краткое или дробное значение. К ним относятся: штриховые масштабные линейки, транспортиры, плоскопараллельные меры длины, угловые меры — угловые плитки, угломеры, угольники и кронциркули.

Калибры (рис. 7.1) представляют собой бесшкальные контрольные инструменты. При выполнении токарной обработки заготовок (деталей) применяют предельные калибры, имеющие наибольший и наименьший продольные размеры. Такие калибры имеют два размера — проходной и непроходной; в соответствии с этим на их поверхности наносятся буквенные обозначения: П Р и НЕ. Для контроля отверстий диаметром от 1 до 3 мм в заготовках (деталях) применяются калибры в виде двусторонних пробок со вставками из проволоки, а для контроля отверстий диаметром от 3 до 50 мм — двусторонние пробки с коническими хвостовиками.

Пробки-калибры для контроля отверстия

Р и с. 7.1. Пробки-калибры для контроля отверстия: а - двусторонняя пробка-калибр со вставками из проволоки; б - двусторонняя пробка со вставками с коническими хвостовиками; в - односторонняя пробка-калибр; г — двусторонняя пробка-калибр с насадками; д — двусторонняя неполная пробка-калибр; е - односторонняя неполная пробка-калибр; ж - односторонняя неполная пробка-калибр с рукояткой; з - односторонняя неполная пробка-калибр с накладками

Калибры с односторонним расположением пробок служат для быстрого замера отверстия в заготовке (детали). У таких калибров проходной (ПР) и непроходной (НЕ) размеры расположены по одну сторону рукоятки. Калибры — двусторонние пробки с насадками применяются для контроля отверстий в заготовках (деталях) диаметром от 30 до 100 мм. Калибры в виде неполных пробок в двустороннем исполнении используются для контроля отверстий диаметром от 18 до 100 мм, а в одностороннем — для контроля отверстий диаметром от 50 до 300 мм.

Наиболее удобны при замерах калибры с неполными односторонними пробками, имеющие рукоятки для контроля отверстий в деталях от 50 до 150 мм и накладки — на диаметры от 150 до 300 мм.

Калибры-скобы применяют для контроля параметров заготовок (деталей) типа осей или валов, обрабатываемых на токарном станке, они бывают разнообразных конструкций (рис. 7.2):

Скобы-калибры для контроля вала

Рис. 7.2. Скобы-калибры для контроля вала: а — двусторонняя листовая скоба; б — штампованная двусторонняя скоба; в — листовая односторонняя скоба прямоугольной формы; г — скоба для контроля диаметров вала; д — штампованные односторонние скобы без рукоятки; е — то же, но с рукояткой; ж — односторонняя литая скоба со вставными губками; з— регулируемая скоба: 1 — корпус; 2— неподвижная губка; 3— вставки; 4— винты

для регулирования

односторонние листовые прямоугольной формы для контроля валов диаметрами от 10 до 180 мм или штампованные — без рукоятки для контроля валов и осей диаметром от 3 до 50 мм и с рукояткой — для контроля валов и осей диаметром от 50 до 170 мм;

О двусторонние листовые и штампованные — для контроля валов и осей диаметром от 2 до 50 мм и от 3 до 100 мм соответственно;

  • 0 односторонние литые со вставными губками — для контроля осей (валов) диаметром 100—325 мм;
  • 0 регулируемые, имеющие вставки и винты для регулирования.

Микрометрические инструменты — это инструменты, которые применяют для измерений различных параметров деталей, изготовляемых с точностью от 0,1 до 0,01 мм. К ним относятся:

О микрометры для наружных измерений с точностью до 0,01 мм;

0 нутромеры для измерения внутренних размеров деталей с точностью до 0,01 мм;

О глубиномеры для измерения глубины отверстий, уступов, выточек и т.д. с точностью до 0,1 мм. Величина измеренного размера у этих инструментов определяется суммой показаний основной шкалы и шкалы барабана. Показание основной шкалы определяется числом целых миллиметров, нанесенных ниже продольной линии, и половин миллиметров, расположенных выше этой линии.

Микрометр (рис. 7.3, а) используется для измерения наружных параметров детали. Здесь скоба 1 имеет на одном конце пятку 2, а на другом — втулку-стебель 5, внутрь которой ввернут микрометрический винт 3.

Торцы пятки и микрометрического винта 3 являются измерительными поверхностями. Винт 3 жестко связан с вращающимся барабаном 6, на коническую часть которого нанесена шкала нониуса (50 делений). На головке микрометрического винта имеется устройство, обеспечивающее постоянное измерительное давление, —трещотка 7, которая прекращает вращать микрометрический винт и проворачивается при измерении параметра детали (в момент плотного соприкосновения измерительных поверхностей микрометра и поверхности детали). После этого специальным стопором 4 фиксируют размер детали при измерении. Шаг микрометрического винта равен 0,5 мм, т.е. продольное перемещение винта за полный оборот равно 0,5 мм, а цена деления шкалы нониуса 0,01 мм (0,5 мм : 50 = = 0,01 мм). Измеренный размер определяется как сумма показаний основной шкалы и шкалы барабана (рис. 7.3, б, в). Показания основной шкалы микрометра — это число целых миллиметров ниже продольной линии и половин миллиметров, расположенных выше этой линии. Погрешность измерений составляет 0,01 мм.

Микрометрические инструменты

Р и с. 7.3. Микрометрические инструменты: а — микрометр; б — первый замер микрометром; в — второй замер микрометром; г — микрометрический нутромер; д — удлинительный стержень для нутромера

Микрометры изготавливают с пределами измерений 0—25; 25-50; 50-75; 75-100; 100-125; 125-150; 150-175; 175-200; 200-225; 225-250; 250-275; 275-300; 300-400; 400-500 и 500—600 мм.

Микрометрический нутромер (рис. 7.3, г) служит для измерения параметров внутренних размеров деталей. Этот измерительный инструмент дает погрешность до 0,01 мм и имеет стержень 2, в резьбовое отверстие которого вставлен микрометрический винт 4, фиксирующийся стопором 3 при измерении в установленном положении. Шаг микрометрической винтовой пары равен 0,5 мм. Концы стержня и винта имеют сферические измерительные поверхности 1. Барабан 5в правой части инструмента жестко связан с гайкой 6. Для увеличения пределов измерений служат дополнительные удлинительные стержни (рис. 7.3, д). Результат измерений при замерах внутренней части детали определяется как сумма показаний основной шкалы, нанесенной на поверхность главного стержня, и шкалы на левой части барабана, вращающегося в процессе измерения.

Микрометрические глубиномеры — специальные инструменты для измерения глубины отверстий в деталях, а также уступов, выточек и т.д.

Штангенинструменты наиболее часто используются для измерений обрабатываемых на токарных станках заготовок (деталей). Эти инструменты подразделяют на штангенциркули марок ШЦ-1, ШЦ-П, ШЦ-Ш (рис. 7.4); штангенглубиномеры; штангенрейсмусы.

Штангенциркули

Р и с. 7.4. Штангенциркули: а — ШЦ-1; б — ШЦ-П; в — ШЦ-Ш; 7-штанга;

2 — измерительные губки; 3— рамка; 4— зажим рамки; 5— нониус; 6 — микрометрическая подача

Отличительной конструктивной особенностью штангенин- струментов является наличие штанги и отсчетного приспособления. Измерение параметров обрабатываемых на токарном станке заготовок (деталей) производят с помощью основной штриховой шкалы с делением 1 мм, нанесенной на штанге. Для повышения точности отсчета по основной шкале штангенин- струменты снабжены отсчетным приспособлением — нониусом — дополнительной штриховой шкалой, которая нанесена на подвижной каретке, закрепленной на штанге инструмента. Длина нониусной шкалы устанавливается равной целому числу делений основной шкалы, а число делений на шкале нониуса — на одно больше.

Конечный результат измерения представляет собой сумму двух величин: целой (целые миллиметры) и дробной (доли миллиметра). Целая часть определяется положением нулевого штриха нониусной шкалы, т.е. числом миллиметров, целиком укладывающихся на отрезке основной шкалы от ее начала до нулевого штриха нониуса. В примере на рис. 7.5 нулевой штрих нониуса расположен между 20-м и 21-м штрихами основной шкалы, т.е. целая часть размера составит 20 мм. Дробная часть измерения определяется штрихом нониуса, совпадающим с каким-либо штрихом основной шкалы, как произведение значения отсчета (значение отсчета по нониусу равно частному от деления цены деления основной шкалы на количество делений шкалы нониуса) на номер штриха, совпадающего с соответствующим штрихом основной шкалы, увеличенный на единицу. В примере на рис. 7.5 значение отсчета по нониусу равно 1 : 10 = 0,1 мм и дробная часть определится как 0,1x7 = 0,7 мм (совпадает шестой штрих шкалы нониуса). Отсюда находим измеряемый размер: 20 мм + 0,7 мм = = 20,7 мм.

Пример отсчета по шкале нониуса штангенинструмента

Рис. 7.5. Пример отсчета по шкале нониуса штангенинструмента

Для повышения точности отсчета по нониусу и упрощения задачи правильного нахождения совпадающих штрихов применяют растянутую шкалу нониуса — «нормальную» шкалу увеличивают в 2 или 3 раза и полученный отрезок делят на то же число интервалов делений. В этом случае каждому интервалу нониусной шкалы соответствует не одно деление основной шкалы, а два или три. Величина, показывающая, сколько делений основной шкалы соответствует одному делению шкалы нониуса, называется модулем нониуса. Инструментальные производства выпускают штангенинструменты с модулями 1; 2 и 5 и величиной отсчета по нониусу 0,05 и 0,1 мм.

Штангенциркули ШЦ-I, ШЦ-П и ШЦ-Ш наиболее широко применяются в процессе токарной обработки для измерения наружных и внутренних диаметров, длин, толщин, глубин и т.д.

Штангенциркуль ШЦ-I (рис. 7.4, а) с двусторонним расположением губок применяется для измерений наружных и внутренних размеров, имеет пределы измерения от 0 до 125 мм, величину отсчета 0,1 мм. Штангенциркуль ШЦ-Н (рис. 7.4, б) с двусторонним расположением губок предназначен для измерения и разметки, имеет пределы измерений от 0 до 200 мм и от 0 до 320 мм, величину отсчета 0,05 и 0,1 мм. Штангенциркуль ШЦ-Ш (рис. 7.4, в) имеет пределы измерений от 0 до 500 мм при величине отсчета 0,05 и 0,1 мм; от 240 до 710 мм; от 320 до 1000 мм; от 500 до 1400 мм; от 800 до 2000 мм при величине отчета 0,1 мм. Штангенциркуль ЩЦ-Ш предназначен для измерения диаметров отверстий и валов, длин, толщин, глубин.

Штангенглубиномеры применяют для измерения глубины выточек, канавок, уступов и проч.; они имеют пределы измерений 200, 320 и 500 мм и величину отсчета по нониусу 0,05 и 0,1 мм. Конструктивно они отличаются от штангенциркуля тем, что подвижные губки на рамке выполнены в виде траверсы-основания, а неподвижные губки на штанге отсутствуют.

Штангенрейсмусы используются для выполнения разметочных работ и отличаются от штангенциркулей тем, что неподвижные губки на штанге заменены массивным основанием с точно обработанной нижней плоскостью. На подвижной рамке этого инструмента имеется одна губка, на которую устанавливают сменные измерительные ножки.

Индикатор — измерительный прибор, предназначенный для проверки на точность узлов станка, установки предварительно обработанных деталей, проверки биения (отклонения от оси вращения), овальности, конусности цилиндрических поверхностей и т.п. Этот прибор используют в сочетании с нутромерами, глубиномерами и другими инструментами для измерения внутренних и наружных размеров, отклонения от параллельности, плоскостности и т.д.

Индикаторы бывают часового и рычажного типов. Наиболее распространены индикаторы часового типа с ценой деления 0,01 и 0,001 мм. Индикатор часового типа, изображенный на рис. 7.6, основан на применении зубчатых зацеплений, преобразующих поступательное движение измерительного стержня 8 во вращательное движение стрелки 5. На циферблате индикатора имеются две шкалы: красная для отсчета отрицательных отклонений и черная — для отсчета положительных. Каждая шкала имеет по 100 делений. Перемещение стержня на 1 мм соответствует одному обороту большой стрелки, т.е. цена деления равна 0,01 мм. Малая стрелка на указателе 6отмечает число целых миллиметров перемещения измерительного стержня. Установка стрелки в нулевое положение производится вращением циферблата, соединенного с ободом 4, или поворотом головки 11 измерительного стержня (при неподвижном циферблате).

Индикатор часового типа

Р и с. 7.6. Индикатор часового типа

При измерении индикатор крепят к стойке за гильзу 7 или ушко на корпусе 1. При этом шарик /0 измерительного наконечника 9 постоянно находится в контакте с измеряемой поверхностью. Остановка обода производится винтом 2.

На современных токарных станках, оснащенных УЧПУ и компьютерной приставкой, применяется комплекс автоматического измерения поверхностей обрабатываемых заготовок (деталей) с автоматической коррекцией положения режущего инструмента в координатной системе станка. На рис. 7.7 в качестве примера показана схема измерения наружного диаметра обрабатываемой заготовки 1.

Схема автоматического измерения поверхностей обрабатываемых деталей и автоматической коррекции положения режущего инструмента

Рис. 7.7. Схема автоматического измерения поверхностей обрабатываемых деталей и автоматической коррекции положения режущего инструмента

В одной из позиций револьверной головки 3 закреплен индикатор 2 контакта. По заданной УЧПУ /программе индикатор после остановки шпинделя касается обрабатываемой наружной поверхности заготовки сверху, а затем снизу. Сигнал от индикатора 2 через датчик 4 обратной связи поступает в УЧПУ, которое фиксирует размеры хх и х2; при этом разность х2—хх равна измеряемому диаметру. Сигнал касания передается также через приемное устройство 5 и преобразователь 6 в УЧПУ, где производится соответствующий расчет. Затем необходимый сигнал через транзисторный преобразователь 8 поступает в обмотку возбуждения электродвигателя 9 подач, который, вращая шариковую винтовую пару 10, корректирует положение суппорта с инструментом. Погрешность измерения составляет 0,004—0,005 мм, что позволяет без вмешательства наладчика обеспечить в автоматическом цикле погрешность обработки от 0,02 до 0,03 мм. Все указанные выше операции при выполнении измерений отражаются на дисплее компьютера.

Комментариев нет:

Отправить комментарий

                                                                          Группа 406 Дифференцированного зачета по общеобразовательной дис...