понедельник, 6 февраля 2023 г.

07.02.2023

Группа 512

Предмет: Ручная дуговая сварка (наплавка, резка) плавящимся покрытым электродом

Тема: Виды резки металлов и сплавов

Тема урока: Виды резки металлов и сплавов.

Цель урока: изучить данную тему, составить конспект урока. 

Сварка – это технологический процесс получения неразъемных соединений за счет установления межатомных связей между материалом (материалами) соединяемых заготовок.

Исходные заготовки для изготовления сварных конструкций это прокат (лист, труба, профили), штампованные детали и т.д. Сварная конструкция может иметь очень сложную форму при достаточно простой технологии ее изготовления.

Методы сварки можно подразделяют на термическиетермомеханические и механические.

Термические методы (сварка плавлением) основаны на расплавлении металла. Кромки соединяемых заготовок расплавляются внешним источником нагрева. При этом образуется сварочная ванна. После затвердевания расплавленного металла (сварочной ванны) образуется монолитный шов, который соединяет свариваемые заготовки в одну.

Соединение заготовок при механических методах осуществляется за счет высокого давления, вызывающего пластическую деформацию в месте сварки. При этом необходимо разрушить оксидную пленку на поверхности свариваемых заготовок и смять микронеровности. Величина давления должна быть достаточной для того, чтобы между металлом (металлами), свариваемых заготовок образовались межатомные связи, т.е. образовалось сварное соединение. Все эти процессы облегчаются в условиях пластического течения металла (одна заготовка как бы вдавливается в другую).

При термомеханических методах сварки металл в месте соединения деталей нагревается до температуры плавления или пластического состояния. Нагрев позволяет снизить давление и уменьшить величину внедрения одной заготовки в другую для образования сварного соединения.

Сварка плавлением.

Сварка плавлением (термические методы) – наиболее широко используемая технология – основная доля сварочных работ приходится на сварку плавлением. Ее применение позволяет получать сварные конструкции различных габаритов, сваривать заготовки разной толщины - от весьма малой (доли миллиметра) до 1м и более. Сварку можно производить в цеховых условиях, а также на улице при монтаже строительных ферм и конструкций.

Вместе с тем, наличие расплавленного металла в сварочной ванне предопределяет ряд особенностей, которые следует учитывать при сварке оплавлением.

В том случае, если сварочная ванна не защищена от атмосферы, расплавленный металл окисляется, поглощает газы, вследствие чего получает низкие механические свойства, и, прежде всего, пластичность – становится хрупким. Это требует защиты сварного шва и прилегающей зоны металла в процессе сварки.

В зависимости от способа нагрева, вызывающего плавление металла, различают следующие виды сварки: электродуговая, электроннолучевая, плазменная, газовая и др. Наибольшее распространение получили электродуговая и газовая сварка, а также электрошлаковая для сварки крупногабаритных толстостенных заготовок.

Электродуговая сварка.

Источником тепла для расплавления металла является электрическая дуга – устойчивый (т.е. существующий длительное время) электрический разряд между электродами, температура дуги свыше 5000°С. Дуга прямого действия – горит между электродом и заготовкой, т.е. одним из электродов является сама заготовка. Дуга косвенного действия – возбужденная только между электродами.

Электродуговая сварка выполняется с применением специальных сварочных материалов: наплавочных (металлы – материалы электродов), флюсов и обмазок, последние для защиты сварочной ванны от атмосферы.

Защита металла шва - изоляции сварочной ванны от атмосферы осуществляется сварочными флюсами. Флюс может подаваться в зону сварки, или его используют в качестве обмазок электродов. Защита шва может быть осуществлена с помощью газов. Защитные газы – нейтральные (аргон, гелий) и углекислый (СО2) обеспечивают лучшую защиту от кислорода воздуха, чем электроды с покрытием и флюсы. Газы подаются в зону сварки через специальные сопла.

Сварка в среде углекислого газа применяется для заготовок из углеродистых сталей. Сварка в среде инертных газов или их смеси применяется для металлов и сплавов с высокой химической активностью – титана, алюминия, магния, а также меди, коррозионно-стойких сталей.

Электродуговая сварка может быть ручной и автоматической. Ручная сварка плавящимся электродомзанимает наибольший объем. Электроды вручную подают в зону горения дуги и перемещают вдоль свариваемого изделия. Ручной сваркой сваривают разные металлы, применяя соответствующие электроды и обмазки, получая сварные соединения различной конструкции. Автоматическая электродуговая сваркав 5…10 раз производительнее ручной сварки. Эта технологияобеспечивает автоматическую подачу электрода по мере его расходования и перемещение дуги вдоль шва, подачу флюса,поддерживает стабильное горение дуги.

Газовая сварка.

Газовую сварку производят благодаря теплоте, выделяемой при сгорании горючего газа, чаще всего ацетилена, в кислороде. Хранение и транспортировка газов осуществляется в баллонах, где газы находятся под высоким давлением. Из баллонов газы через редуктор – устройство, понижающее давление, подаются в сварочную горелку, смешиваются в ней и, выходя за ее наконечник, сгорают, образуя пламя.

Производительность газовой сварки низкая, автоматизировать ее сложно. Поэтому она применяется в монтажных и ремонтных работах при сварке заготовок малой толщины.

Сведения об электронно-лучевом, ионно-лучевом и лазерном нагреве для сварки.

Указанные источники нагрева являются высокоэнергетическими, они характеризуются весьма высокой удельной мощностью.

Электронно-лучевую сварку производят в вакуумной камере фокусированным электронным лучом при этом поверхность свариваемого материала бомбардируется электронами и их кинетическая энергия переходит в тепловую. Достоинства технологии: идеальная защита от внешней среды – вакуум, узкий сварочный шов. Возможна сварка тугоплавких и химически активных материалов, а также неметаллических материалов; можно сваривать разнородные металлы и металлы с неметаллами.

Нагрев металла энергии при плазменной обработке происходит за счет потока ионов, а также нейтральных молекул и атомов, образующихся при пропускании аргона, азота, аммиака, других газов и их смесей через дуговой разряд. Удельная мощность в пятне нагрева ниже, чем при электронно-лучевой бомбардировке.

При лазерной сварке используют твердотельные и газовые квантовые генераторы – лазеры.

Фокусировка луча в пятно диаметром до сотых долей миллиметра, позволяет нагревать практически все металлы до расплавления и даже до кипения. Лазеры большой мощности позволяют сваривать заготовки из металла толщиной до нескольких миллиметров.

Лазером можно прошивать отверстия весьма малого диаметра (до 5 мкм) в любых материалах, в том числе в алмазах.

В зависимости от способа соединения металла в момент сварки различают два основных ее вида:

Виды сварных соединений

Рис. 12.12. Виды сварных соединений: а — стыковые; б — внахлестку; в — угловые; г — тавровые

  • сварка давлением, когда металл доводят до пластичного состояния и сдавливают;
  • сварка плавлением, при которой металл нагревают выше температуры плавления, после чего сваривают без применения механического воздействия.

Высокий местный нагрев при сварке вызывает значительное изменение в структуре металла. Чем меньше околошовная зона термического воздействия, тем выше свойства сварного шва.

В зависимости от источника нагрева различают электрическую и химическую сварку.

Электрическая сварка. Эта сварка основана на использовании тепла, выделяемого при прохождении электрического тока. Электрическая сварка подразделяется:

  • ? на сварку сопротивления (или контактную), при которой электрический ток выделяет тепло за счет омического сопротивления (в контактах свариваемых деталей);
  • ? электро дуговую, основанную на использовании при сварке тепла, выделяемого электрической дугой.

При сварке методом сопротивления электрический ток подводится к двум свариваемым изделиям. При их контакте выделяется тепло, которое размягчает металл, и под нагрузкой они свариваются. Применяются три вида контактной сварки: точечная, роликовая и стыковая.

Точечная сварка служит для соединения внахлестку сеток и каркасов. Суммарная толщина свариваемых таким способом изделий не должна превышать 20 мм.

Роликовая сварка используется для соединения листового металла.

Стыковая сварка применяется для соединения металлических стержней арматуры.

Источником тепла при электродуговой сварке (рис. 12.13) является электрическая дуга, открытая в 1902 г. профессором В.В. Петровым. При этом температура, развивающаяся в центре столба дуги, достигает 6000 °С.

Практическое применение электрической дуги для сварки металлов было осуществлено русскими инженерами Н.Н. Бенардосом и Н.Г. Славяновым.

По способу Бенардоса (рис. 12.13, а) электрическая дуга возбуждается в атмосфере между угольным электродом и сва-

Схема дуговой электросварки

Рис. 12.13. Схема дуговой электросварки: а — способ Н.Н. Бенардоса; б — способ Н.Г. Славянова; 1 — держатель; 2 — электрод; 3 — электрическая дуга; 4 — присадочный материал; 5 — свариваемая деталь; 6 — плита; 7 — гибкий провод

риваемой деталью. При этом способе пользуются постоянным током. Положительный полюс присоединяют к свариваемому изделию, отрицательный — к угольному электроду. Присадочный материал вводят отдельно. Этот способ сварки широко применяется при сварке цветных металлов.

Способ Славянова(рис. 12.13, б) — основной вид сварки, применяемый для соединения элементов металлических строительных конструкций. При контакте изделия и металлического электрода между ними возникает электрическая дуга с температурой выше 5000 °С. При этой температуре металл электрода переходит в мелкокапельное жидкое состояние и переносится на свариваемое изделие. Металл изделия также расплавляется на некоторую глубину, которая называется глубиной провара, образуя с наплавленным металлом однородный сплав, в результате чего соединение приобретает высокую прочность.

Несмотря на большую распространенность, электродуго- вая сварка имеет ряд существенных недостатков:

  • ? малая скорость сварки за счет большой зоны разогрева металла, что вызывает коробление изделия;
  • ? пористость шва и выгорание легирующих компонентов из сплавов во время окислительных процессов;
  • ? затруднение сварки металлов с различными физико-механическими свойствами.

Для устранения отмеченных недостатков в последние годы применяется химическая сварка в среде защитных газов или под флюсом.

Химическая сварка. Эта сварка производится за счет тепла химических реакций и делится на газовую и термитную.

При газовой сварке тепловым источником служат продукты сгорания смеси кислорода с горючим газом или жидким распыленным топливом. В настоящее время применяются следующие горючие газы: ацетилен, водород, нефтегаз, природный газ, а также пары бензина, бензола, керосина и др.

Ацетилено-кислородная сварка наиболее экономична и эффективна. Ацетилен С2Н2 — бесцветный газ с плотностью 906 кг/м3, который получают путем воздействия воды на карбид кальция СаС2 + 2Н20 —> С2Н2 + Са(ОН)2.

При давлении 17,5 МПа и выше ацетилен взрывоопасен.

При полном сгорании ацетилена в кислороде образуется пламя с температурой около 3200 °С.

Для сварки используются специальные сварочные головки, в которых ацетилен смешивается с кислородом (рис. 12.14) и сгорает у выхода из горелки. Процесс сварки осуществляется наплавлением присадочного металла на нагретый ацетиленокислородным пламенем шов.

Присадочным материалом при газовой сварке служит стальная проволока диаметром 2...8 мм с содержанием углерода от 0,15 до 1,5 % в зависимости от состава свариваемого металла. Для уменьшения степени окисления шва во время сварки применяют флюсы (буру и борную кислоту).

Схема газовой сварки

Рис. 12.14. Схема газовой сварки:

1 — присадочный материал; 2 — свариваемый материал; 3 — наплавленный металл; 4 — корпус горелки; 5,7 — шланги для подачи ацетилена и кислорода; 6 — баллон с кислородом; 8 — ацетиленовый

генератор

Газовую сварку обычно применяют для изделий толщиной не более 30 мм. При большей толщине свариваемого изделия целесообразно применять электродуговую сварку.

Термитная сварка. Термит — смесь алюминиевого порошка (22 %) и оксидов железа Fe203 или Fe304 (78 %). Смесь предварительно тщательно перемешивают и подогревают до температуры около 1300 °С. После этого смесь вступает в реакцию и начинает выделять тепло при температуре 3000 °С:

Термитную сварку применяют для сварки труб, рельсов, при ремонтных работах. Наибольшее распространение термитная сварка получила на железнодорожном транспорте при сварке рельсов и труб.

Резка металлов. В строительстве широко применяется газовая резка металла. Наиболее распространена ацетиленокислородная резка металлов (рис. 12.15).

Схема ацетилено-кислородной резки

Рис. 12.15. Схема ацетилено-кислородной резки:

1 — режущий кислород; 2 — нагревательное пламя; 3 — выдуваемая окалина

Процесс резки распадается на три этапа:

  • 1) подогрев стали до температуры воспламенения (=1250 °С) смесью ацетилена и кислорода (С2Н2 + 02);
  • 2) сжигание подогретого участка стали подводимой струей чистого кислорода (02).
  • 3) выдувание струей кислорода оксидов, образовавшихся в разрезе.

Комментариев нет:

Отправить комментарий

                                                                          Группа 406 Дифференцированного зачета по общеобразовательной дис...